Joint Parsing and Semantic Role Labeling
نویسندگان
چکیده
A striking feature of human syntactic processing is that it is context-dependent, that is, it seems to take into account semantic information from the discourse context and world knowledge. In this paper, we attempt to use this insight to bridge the gap between SRL results from gold parses and from automatically-generated parses. To do this, we jointly perform parsing and semantic role labeling, using a probabilistic SRL system to rerank the results of a probabilistic parser. Our current results are negative, because a locallytrained SRL model can return inaccurate probability estimates.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملJoint A∗ CCG Parsing and Semantic Role Labeling
Joint models of syntactic and semantic parsing have the potential to improve performance on both tasks—but to date, the best results have been achieved with pipelines. We introduce a joint model using CCG, which is motivated by the close link between CCG syntax and semantics. Semantic roles are recovered by labelling the deep dependency structures produced by the grammar. Furthermore, because C...
متن کاملJoint Syntactic and Semantic Parsing of Chinese
This paper explores joint syntactic and semantic parsing of Chinese to further improve the performance of both syntactic and semantic parsing, in particular the performance of semantic parsing (in this paper, semantic role labeling). This is done from two levels. Firstly, an integrated parsing approach is proposed to integrate semantic parsing into the syntactic parsing process. Secondly, seman...
متن کاملExploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network
We investigate mutual benefits between syntax and semantic roles using neural network models, by studying a parsing→SRL pipeline, a SRL→parsing pipeline, and a simple joint model by embedding sharing. The integration of syntactic and semantic features gives promising results in a Chinese Semantic Treebank, demonstrating large potentials of neural models for joint parsing and semantic role label...
متن کاملDependency Parsing and Semantic Role Labeling as a Single Task
We present a comparison between two systems for establishing syntactic and semantic dependencies: one that performs dependency parsing and semantic role labeling as a single task, and another that performs the two tasks in isolation. The systems are based on local memorybased classifiers predicting syntactic and semantic dependency relations between pairs of words. In a second global phase, the...
متن کامل